MATH 579 Exam 7 Solutions

Part I: C_{m} is the graph with m vertices and m edges, consisting of a single long cycle. (e.g. C_{4} is a square).
Recall that a vertex coloring is proper if no two adjacent vertices get the same color. Find the number of proper colorings of this graph with n colors. Simplify your answer.

Label the edges from $[m]$. Let A_{i} (for $i \in[m]$) denote those colorings wherein the vertices connected by edge i have the same color. Conveniently, the number of colorings of $A_{i} \cap A_{j}$ does not depend on whether i, j are adjacent edges or not. Hence, by inclusion-exclusion, the number of colorings is $n^{m}-\binom{m}{1} n^{m-1}+\binom{m}{2} n^{m-2}-\binom{m}{3} n^{m-3}+\cdots+(-1)^{m-1}\binom{m}{m-1} n+(-1)^{m}\binom{m}{m} n$. Apart from the last term (which has n instead of 1), this is exactly $(n-1)^{m}$, by the binomial theorem. Hence the answer is $(n-1)^{m}+(-1)^{m}(n-1)$.

Part II:

1. Calculate $\phi(210)$.

$$
\phi(210)=\phi(2) \phi(3) \phi(5) \phi(7)=1 \cdot 2 \cdot 4 \cdot 6=48
$$

2. How many n-permutations contain exactly one cycle of length 1 ?

There are n ways to choose the cycle; the remainder is a derangement of $n-1$, of which there are D_{n-1}. Hence the answer is $n D_{n-1}=n(n-1)!\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!}=n!\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!}$.
3. How many positive integers are there in [1000] that are neither perfect squares nor perfect cubes?

Let $A_{\text {square }}$ and $A_{\text {cube }}$ denote the numbers possessing these two properties. $\left|A_{\text {square }}\right|=31$, because $31^{2}<1000<32^{2}$. $\left|A_{\text {cube }}\right|=10$, because $10^{3}=1000$. $A_{\text {square }} \cap A_{\text {cube }}$ are those numbers that are perfect $\operatorname{lcm}(2,3)=6^{\text {th }}$ powers. There are 3 such, since $3^{6}<1000<4^{6}$. Hence the answer is $1000-31-10+3=962$.
4. How many three-digit positive integers are divisible by at least one of six and seven?

Let A_{6} denote the property of being divisible by 6 , and A_{7} denote the property of being divisible by 7 . There are $\left\lfloor\frac{999}{6}\right\rfloor=166$ numbers in [999] divisible by 6 , and $\left\lfloor\frac{99}{6}\right\rfloor=16$ numbers in [99] divisible by 6 ; hence $166-16=150$ numbers in [100, 999] having property A_{6}. Similarly, there are $\left\lfloor\frac{999}{7}\right\rfloor-\left\lfloor\frac{99}{7}\right\rfloor=128$ numbers in $[100,999]$ having property A_{7}. There are $\left\lfloor\frac{999}{42}\right\rfloor-\left\lfloor\frac{99}{42}\right\rfloor=21$ numbers divisible by $\operatorname{lcm}(6,7)=42$, hence having both A_{6} and A_{7}. Hence, the answer is $150+128-21=257$.
5. Suppose $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ satisfies $\sum_{i=0}^{n} f(i)=n^{2}$, for all $n \in \mathbb{N}_{0}$. Find a closed form for $f(n)$.

Consider the poset \mathbb{N}_{0}, with the usual order, and the usual $f(a, b)=f(b-a)$. We learned in

$$
\begin{aligned}
& \text { class that } \mu(x, y)=\left\{\begin{array}{ll}
1 & y-x=0 \\
-1 & y-x=1 \\
0 & y-x>1
\end{array}\right\} \text {. The problem specifies that } n^{2}=(1 \star f)(0, n) \text {; hence } \\
& f=\left(n^{2} \star \mu\right)(0, n)=\sum_{0 \leq x \leq n} x^{2} \mu(x, n)=\left\{\begin{array}{ll}
-(n-1)^{2}+n^{2} & n>0 \\
0 & n=0
\end{array}\right\}=\left\{\begin{array}{ll}
2 n-1 & n>0 \\
0 & n=0
\end{array}\right\} .
\end{aligned}
$$

Exam grades: High score $=104$, Median score $=80$, Low score $=50$

